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Abstract

We participated in the Document Understand-
ing Conference 2002 (DUC-2002) in order to
confirm the effectiveness of our summarization
system based on an important sentence extrac-
tion technique. Our system employs the ma-
chine learning algorithm, Support Vector Ma-
chines, to classify a sentence into an impor-
tant or an unimportant sentence. The result
of the Single-Document Summarization task
shows that our system’s performance achieved
a high grade in coverage metrics.

1 Introduction

A summary made by an important sentence ex-
traction system may lack coherence, but still
contain useful information. Therefore, this
technique plays an important role in automatic
text summarization.

Conventionally, an important sentence ex-
traction method focus on sentence features and
define significance scores. The features include
key words, sentence position, and certain lin-
guistic clues. Sekine and Nobata (2001) pro-
posed scoring functions to integrate heteroge-
neous features and showed the effectiveness of
the method at DUC-2001. However, it is hard
to determine the optimal parameter values man-
ually.

When a large quantity of training data is
available, tuning can be effectively realized by
machine learning. Aone et al. (1998) and Ku-
piec et al. (1995) employed Bayesian classifiers,
Mani et al. (1998), Lin (1999) used decision tree
learning.

We have already applied Support Vector
Machines (SVMs) (Vapnik, 1995) to Japanese
Single-Document Summarization. We con-
firmed the effectiveness of our systems(Hirao et
al., 2002). In order to confirm performance of
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Figure 1: Support Vector Machines.

our system for English documents, we partic-
ipated in the Single-Document Summarization
task at the Document Understanding Confer-
ence 2002 (DUC-2002).

The remainder of this paper is organized as
follows. Section 2 describes our system based on
Support Vector Machines. In Section 3, we show
the evaluation results at DUC-2002. Finally,
Section 4 concludes this paper.

2 Description of our system

2.1 Support Vector Machines (SVMs)

SVM is a supervised learning algorithm for two-
class problems. Figure 1 shows the conceptual
structure of SVM.

Training data is given by

(x1, y1), · · · , (xu, yu), xj ∈ Rn, yj ∈ {+1,−1}.

Here, xj is a feature vector of the j-th sample; yj

is its class label, positive (+1) or negative (−1).
SVM separates positive and negative examples
by a hyperplane given by

w · x + b = 0, w ∈ Rn, b ∈ R, (1)

In general, such a hyperplane is not unique.
The SVM determines the optimal hyperplane by
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maximizing the margin. The margin is the dis-
tance between negative examples and positive
examples; the distance between w · x + b = 1
and w · x+b = −1. The examples on w · x+b =
±1 are called the Support Vector which repre-
sents both positive or negative examples.

Here, the hyperplane must satisfy the follow-
ing constraints:

yi(w · xj + b) − 1 ≥ 0.

Hence, the size of the margin is 2/||w||. In order
to maximize the margin, we assume the follow-
ing objective function:

Minimize
w,b

J(w) =
1

2
||w||2 (2)

s.t. yj(w · xj + b) − 1 ≥ 0.

By solving a quadratic programming prob-
lem, the decision function f(x) = sgn(g(x)) is
derived, where

g(x) =
u

∑

i=1

λiyixi · x + b. (3)

Since training data is not necessarily linearly
separable, slack variables (ξj) are introduced for
all xj. These ξj give a misclassification error
and should satisfy the following inequalities:

yi(w · xj + b) − (1 − ξj) ≥ 0.

Hence, we assume the following objective func-
tion to maximize margin:

Minimize
w,b,ξ

J(w, ξ) =
1

2
||w||2 + C

u
∑

j=1

ξj (4)

s.t. yj(w · xj + b) − (1 − ξj) ≥ 0.

Here, ||w||/2 indicates the size of the margin,
∑u

j=1 ξj indicates the penalty for misclassifica-
tion, and C is the cost parameter that deter-
mines the trade-off for these two arguments. By
solving a quadratic programming problem, the
decision function f(x) = sgn(g(x)) is derived in
the same as linear separation (equation (3)).

The decision function depends only on sup-
port vectors (λi 6= 0). Training examples, ex-
cept for support vectors (λi = 0), have no influ-
ence on the decision function.

SVMs can handle non-linear decision surfaces
by simply substituting every occurrence of the
inner product in equation (3) with kernel func-
tion K(xi · x). Therefore, the decision function
can be rewritten as follows:

g(x) =
u

∑

i=1

λiyiK(xi, x) + b. (5)

Note that the kernel function must satisfy the
Mercer’s condition.

In this paper, we use polynomial kernel func-
tions, which have been found to be very effective
in the study of other tasks in natural language
processing (Joachims, 1998; Kudo and Mat-
sumoto, 2001; Kudo and Matsumoto, 2000):

K(x, y) = (x · y + 1)d. (6)

2.2 Sentence Ranking

Important sentence extraction can be regarded
as a two-class problem. However, the propor-
tion of important sentences in training data will
differ from that in test data. The number of im-
portant sentences in a document is determined
by a summarization rate or word limit which
is given at run-time. In the Single-Document
Summarization task at DUC-2002, the word
limit was 100 words. A simple solution to this
problem is to rank sentences in a document,
then select the top N sentences. We used g(x),
the normalized distance from the hyperplane to
x to rank the sentences.

2.3 Features

We define the features discussed below that are
associated with sentence Si by taking past stud-
ies into account (Zechner, 1996; Sekine, 2001).

Position of sentences

We define a feature function, Posd, for the posi-
tion of Si. Posd is Si’s position in a document.
The first sentence obtains the highest score, the
last obtains the lowest score:

Posd(Si) = 1 −
BD(Si)

D(Si)
.

Here, |D(Si)| is the number of characters
in the document D(Si) that contains Si and
BD(Si) is the number of characters before Si

in D(Si).
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Table 1: Evaluation Results

System-ID Mean Coverage
Length-Adjusted Count of Quality Mean Score for

Coverage Questions Quality Questions
15 0.332 0.232 0.986 0.551
16 0.303 0.214 1.441 0.644
17 0.082 0.299 0.758 0.408
18 0.323 0.228 0.997 0.565
19 0.389 0.293 0.698 0.448
21 0.370 0.247 0.885 0.561
23 0.335 0.272 0.582 0.425
25 0.290 0.220 3.200 1.281

Our System 0.383 0.272 1.014 0.552
28 0.380 0.261 1.013 0.537
29 0.361 0.251 1.210 0.660
30 0.057 0.339 2.637 1.040
31 0.360 0.240 1.153 0.676

Lead 0.370 0.255 0.718 0.490
Human 0.505 0.336 0.505 0.354

Length of sentences

We define a feature function that addresses the
length of sentences as

Len(Si) =
|Si|

maxSz∈D(Si) |Sz|
.

Here, |Si| is the number of characters of sen-
tence Si and maxSz∈D |Sz| is the maximum
number of characters in a sentence that belongs
to D(Si).

Weight of sentences

We defined the feature function that weights
sentences based on TF · IDF word weighting
as

Score(Si) =
∑

t

tf(t, Si) ·w(t, D(Si)).

Here, Score(Si) is the summation of weighting
w(t, D(Si)) of words that appear in sentence Si.
In addition, we define word weight w(t, D(Si))
based on TF · IDF :

w(t, D) = 0.5

(

1 +
tf(t, D)

tfmax(D)

)

· log

(

|DB|

df(t)

)

.

Here, tf(t, D) is the term frequency of t in
D, tfmax(D) is the maximum term frequency
in D and df(t) is the frequency of documents

that contains term t. |DB| is the total number
of the documents in database.

We used the terms t that were judged to be
noun or unknown by the Part-of-Speech tagger,
TreeTagger(Schmid, 1994). The database indi-
cates TIPSTER collection.

Similarity between Headline

We defined feature function Sim(Si), which is
similarity between headlines of documents that
contain Si, as follows:

Sim(Si) =
~v(Si) · ~v(H)

‖~v(Si)‖ ‖~v(H)‖
.

Here, ~v(H) is a boolean vector in the Vector
Space Model (VSM), the elements of which rep-
resent terms in the headline, and ~v(Si) is also a
boolean vector the elements of which represent
terms in the sentence.

Prepositions

Boolean value 1 is given to sentences that in-
clude a certain preposition. The prepositions
are decided by TreeTagger.

Verbs

Boolean value 1 is also given to sentences if they
include a certain verb. The verbs are also de-
cided by TreeTagger.
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3 Results

We trained classifiers by using data at DUC-
2001 and classified sentences contained in test
data (567 documents). Randomly chosen docu-
ments of 295 were evaluated.

Table 1 shows the results of subjective eval-
uation of 13 systems which participated in the
Single-Document Summarization task at DUC-
2002 and two reference results. In the table,
“Lead” denotes the result of a lead-based base-
line system and “Human” denotes the result
of human subjects. “Mean Coverage” (MC)
and “Length-Adjusted Coverage” (LAC) indi-
cate content based metrics for summaries. The
higher score means the better performance.
“Count of Quality Questions” (CQ) and “Mean
Score for Quality Questions” (MCQ) indicate
readability metrics, such as grammaticality, co-
hesion and organization. The lower score means
better performance.

Our system achieved 2nd in MC, 4th in LAC,
8th in CQ and 6th in MCQ. Moreover, our sys-
tem outperformed Lead in MC and LAC, but
was less successful in CQ and MCQ. This re-
sult shows that our summaries contain impor-
tant information but that they have moderate
readability because of the lack of cohesion.

4 Conclusion

We described our system based on Support Vec-
tor Machines, which participated in the Single-
Document Summarization task at DUC-2002
and showed the evaluation results. The results
confirm the effectiveness of our system in cov-
erage metrics.

As future work, we would like to introduce
other feature such as Named Entities, Modali-
ties, and Rhetorical Relations.
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